If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+18m-21=0
a = 2; b = 18; c = -21;
Δ = b2-4ac
Δ = 182-4·2·(-21)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{123}}{2*2}=\frac{-18-2\sqrt{123}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{123}}{2*2}=\frac{-18+2\sqrt{123}}{4} $
| -2u-16=-6(u+4) | | 3y-10=2y-20 | | 4x-17=-24 | | 3/2b+90(b+45)+b(2b-90)=540 | | 2a^2+2a-5=0 | | 6-k=-4 | | 2x^2+3x-5=9 | | 16t2+24t+9=0 | | 9+2x(6)=14+7x | | 3(5-9v)+14=-54 | | 35=–2x–15 | | -.55p-8=0.45p | | (x+5)^2+x^2=18^2 | | x-(-5/6)=0 | | 5y-10=75 | | .75x+5=0 | | 24n+8=72n+33 | | G-g+g=7 | | -1/4(2-x)+12x=44 | | X+18/6+x+9=x-3 | | y-8/7=7-4y/7 | | -3(3+x)+4(×-6)=-4 | | 2x^2+3x-5=4.5 | | 52=4x+8 | | 3a+3a+2=20 | | –69=7v–6 | | 2x^2+3x-5=11 | | 2+(1/6)=3x+4 | | 14d+2d-7d=18 | | 43=(x+5)+(2x+8) | | 3(6+2x)=8(5x+6)-4x | | 3(-3y+7)-2y=10 |